Just when you think you know what to expect…

Well, we are entering that time of the season when we can expect to find baby rattlesnakes any day now. Of course, the youngsters will not be roaming around where they might encounter people for about 10-14 days after birth…so we usually don’t encounter them on trails and in yards until early September.

But our six telemetered females are displaying a variety of behaviors indicating that all may not be about to produce babies. Six weeks ago I reported that Females 39, 41, and 53 were all pregnant and in the gestation shelters they have used repeatedly to thermoregulate before giving birth in previous years. Furthermore, I could feel six fetuses in Female 80’s belly when I implanted her transmitter in June.

Since that mid-July report, Females 39 and 53 have behaved predictably for expecting moms, remaining in their gestation shelter, and both appear to be about to produce kids. In the photos below, note the abdominal girth of these females, with scales pulled widely apart.

Female 39 in her gestation shelter on 20 August 2016 - the same shelter she has used to incubate her kids for three years in a row. Her body temperature at the time of the photo was 32C (90F).
Female 39 in her gestation shelter on 20 August 2016 – the same shelter she has used to incubate her kids for three years in a row. Her body temperature at the time of the photo was 32C (90F).
Female 53 in a different part of the same hollow log as Female 39 on 20 August. Femape 53's body temp was 30C (86F).
Female 53 in a different part of the same hollow log as Female 39 on 20 August. Female 53’s body temp was 30C (86F).

This will be the third consecutive year that Female 39 has produced offspring and the second for Female 53, so far as we know. We were not monitoring them previously. Between the first of July and yesterday, 23 August, the average body temps for Females 39 and 53 have been 28C (82F) and 29C (84F), respectively.

Six weeks ago, Female 41 had just returned to the gestation shelter she used the previous two years, which led me to believe she was likely pregnant again. However, after staying only three weeks, she left and has been spending her days mostly out of sight in various ground squirrel burrows during August. I have not been able to get a good look at her in recent weeks but her behavior and average body temperature of 26C (79F) suggest that she may not reproduce this year. Although Female 41 produced kids in both 2014 and 2015, I want to remind readers that skipping a year or two between broods is far more common than annual reproduction for temperate-latitude pitvipers.

Our remaining three telemetered females are new to the study this year, so I have no data from previous years. Female 66 has behaved quite normally for a non-reproductive year: hunting continuously throughout the spring and summer. Her July-August average body temp has been 22C (72F).

Female 66 in a typical ambush coil in late May. She continues to move around and hunt during July and August.
Female 66 in a typical ambush coil in late May. She continues to move around and hunt during July and August.

Female 75, however, appears ready to produce babies, although she has been moving back and forth frequently between two ground squirrel burrows 17 meters (56 feet) apart. Her average body temperature during July and August has been 27C (81F).

Female 75 on 23 August, illuminated by sunlight reflected from a mirrow, a few inches inside one of the two ground squirrel burrows she has been occupying in recent weeks. Again, note her distended abdomen. Body temp was 27C (81F) at the time of the photo.
Female 75 on 23 August, illuminated by sunlight reflected from a mirror. She is a few inches inside one of the two ground squirrel burrows she has been occupying in recent weeks. Again, note the distended abdomen with scales pulled apart. Body temp was 27C (81F) at the time of the photo.

Finally, there is Female 80. When I captured her and implanted her transmitter in June, I could clearly feel six fetuses lined up in her abdomen. Shortly after I released her at her capture site near the base of the bluff, she climbed up the hillside and has remained near the top ever since. On three occasions, I have climbed that steep, loose, and treacherous slope but have failed to locate her. Her radio signal seems to emanate from thick ornamental ivy growing down from a residential backyard under fig and valley oak trees. She is also just above an underground wasp nest. Just to be clear, I am far more comfortable with rattlesnakes than a nest of wasps – especially where I cannot easily run away! Since I have no previous data from her, she could be in her usual gestation shelter. However, her July-August body temperatures are not consistent with a gestating female, with an average of 23C (73F). I’m not sure how this is going to play out…

Just for comparison, the seven telemetered males have been moving around a lot, hunting and occasionally hanging out with the pregnant girls for a day or two at a time. Their average July-August body temps range from 17C (63F) to 26C (79F), with the average between the boys of 23C (73F). Note how closely these data match non-reproductive Female 66’s average body temp of 22C (72F) during the same period.

A big impressive rattlesnake at over 38 inches and about 1.5 pounds (last October), Male 37 ignored us yesterday as he crossed the trail in front of me and an EYNC visitor with whom I was chatting. The visitor was quite impressed and I never tire of watching these amazing and interesting animals with such an undeserved reputation for aggressiveness!
A big impressive rattlesnake at over 38 inches and about 1.5 pounds (last October), Male 37 ignored us yesterday as he crossed the trail in front of me and an EYNC visitor with whom I was chatting. The visitor was quite impressed and I never tire of watching these amazing and interesting animals with such an undeserved reputation for aggressiveness!

That’s it for now. Next post will almost certainly be (cute!?!?) baby pics!

Emphasis now on hunting and shedding

Before I launch into what’s been going on with the Effie Yeaw rattlesnakes over the past few weeks, I want to pass on a link to a recent interview with Dr. Bree Putman. Bree was a grad student with Matt Holding (lead author of the journal article I linked to in my last post) in Emily Taylor’s lab at Cal Poly San Luis Obispo before she moved on to Rulon Clark’s lab at San Diego State to finish her Ph.D. In Bree’s interview (click here), she talks about ground squirrels and northern Pacific rattlesnakes and she describes some of the very intriguing behavioral questions many of us would love to answer.

Back to EYNC rattlesnakes –

This female California ground squirrel was clearly nursing pups on 26 April at Effie Yeaw Nature Center.
This female California ground squirrel was clearly nursing pups on 26 April in the Effie Yeaw Nature Center preserve.

I have not seen a courting pair of rattlesnakes since 28 April, when three rattlesnake pairs were found together in different locations. Male 37 was found with unmarked adults that were likely females on 11 and 14 May but no courtship was observed. But as the spring courtship season wound down, California ground squirrels began producing pups and the emphasis of both rattlesnake sexes turned to hunting.

After not finding a telemetered rattlesnake in or very near a ground squirrel burrow during the first 400+ observations this year, Male 46 was found in an ambush coil facing an active burrow a foot away on 9 May. In the five weeks since, several rattlesnakes have been found close to or inside squirrel burrows on several occasions.

At the same time, the snakes have also been hunting heavily in vole (aka: meadow mouse; Microtus californicus) tunnels in the grass.

Male 46 visible in a vole tunnel on the morning of 3 June 2016. Original RAW IMG_2192.CR2
Male 46 uncovered (arrow) in a vole tunnel in the grass on the morning of 3 June. Although you cannot see it here, voles construct a maze of above-ground tunnels in thick dry grass that protects them from most predators… but not rattlesnakes. I hope you can appreciate just how impossible it would be to learn about the habits of these snakes without radiotelemetry!

And since about the end of May, the rattlesnakes – especially males – have been shedding.

Pre-shed Male 38 on 14 June 2016 Original RAW IMG_2320.CR2
The rattle of pre-shed Male 38 under a log yesterday, 14 June. The new rattle segment forming in the base of the tail is whitish and covered by the last couple rows of scales. He is easily identified visually by red/green paint in his rattle.

Periodically shedding the corneal layer of the skin (called ecdysis; for more info, click here) takes snakes out of commission for a week or more and males seem to put it off during the spring mating season. It’s a bit like race car drivers waiting for a yellow caution flag to make a pit stop!

Even more interesting is that the rattlesnakes have favorite places where they go during this process and it is not uncommon to find several pre-shed individuals of both sexes together this time of year. Like hibernation, there seem to be many logs and burrows where they could shelter while waiting to shed but they congregate in just a few of them. Those of us who study rattlesnake behavior would love to know why. What is so special about certain locations? Or is it something else… like family ties or some other social interaction?

 

New research on ground squirrels’ resistance to rattlesnake venom

I have mentioned before that much research has been done on the interactions, both behavioral and biochemical, between Northern Pacific Rattlesnakes (Crotalus oreganus) and California Ground Squirrels (Otospermophilus beecheyi). And that research continues.

It started, so far as I know, with studies by UC Davis psychology professors Donald Owings and Richard Coss in the 1970’s, when they became interested in how California Ground Squirrels behaved when confronted by Northern Pacific Rattlesnakes. Several researchers have since spun off various aspects of the relationship between these two species, including Dr. Rulon Clark and his students at San Diego State University, who study the phenomenon from the rattlesnakes’ perspective. A common thread among these studies is that the adult squirrels are largely resistant to the rattlesnakes’ venom, often surviving with nothing but a nasty wound that eventually heals (although adult squirrels occasionally succumb, vividly illustrated by the photo accompanying the Washington Post article linked below).

But while adult ground squirrels seldom die from rattlesnake bites, their pups are much more vulnerable and the rattlesnakes hunt them intensely, starting about this time of year. I have linked a 60-second video made by Denise and I in July 2014 of our Male 36 (yes, the same one just recaptured after 20 months) preying on a ground squirrel pup while the pup’s mother tries to defend her offspring (Read original account here).

Tail-flagging and pushing grass at the snake are common behaviors by adult California Ground Squirrels when confronted by rattlesnakes. In this one-minute clip, the snake had already bitten a pup, which is laying in the grass and out of the frame at the start. The adult squirrel soon retreats to the stricken pup, which appears as a dark area in the grass. The adult squirrel’s attempts to deter the rattlesnake appear to work momentarily a couple of times as the snake turns away but almost immediately comes back toward the bitten pup. Near the end of the clip, the snake reaches the pup and bites it again. Although the pup runs out of the frame, it only makes it a few feet. The rattlesnake follows and swallows it a few minutes later. Excuse the background helicopter noise, as the fire department was conducting an operation in the river nearby. View the video here.

I bring this up now because my friend, videographer George Nyberg (who produced the very nice 2015 video of my rattlesnake study), has alerted me to a new Washington Post article on the biochemical “arms race” between Northern Pacific Rattlesnakes and California Ground Squirrels (view article). Thanks, George!

Matt Holding, whose research is the focus of the WP piece, is a former graduate student of another friend, Dr. Emily Taylor at Cal Poly San Luis Obispo. Jim Biardi, second author on the new study, is a former member of the UC Davis group that originally studied ground squirrels and rattlesnakes.

The Washington Post does a nice job of describing how natural selection works: in short, there is always variation among individuals and some are better adapted than others to feed themselves (or avoid being eaten!) and those individuals tend to survive longer and produce more offspring, which carry the genes for those successful traits. Less successful traits are passed on less frequently (i.e., fewer offspring are produced). The peer-reviewed paper upon which the WP article is based was published in the journal Proceedings of the Royal Society B (volume 283, issue 1829, April 2016). However, since this is not an open source journal, access to the complete manuscript is not easily available to the general public right away.

Interesting rattlesnake news

How well do rattlesnakes tolerate surgically-implanted transmitters?

As I have discussed before, there is a long (20+ years) history of telemetry studies of rattlesnakes in which individual animals tolerate the transmitters for years, enduring periodic surgeries to replace the radios. The animals thrive, repeatedly producing offspring and growing at the same rate as rattlesnakes without transmitters.

I bring this up because of a phone call last weekend from the landowner where I conducted my El Dorado County field study. He had just encountered the first Northern Pacific Rattlesnake I ever marked and telemetered, still identifiable by the yellow-over-yellow paint remaining in his rattle. He is now an exceptionally large male with twelve rattle segments – but in 2009, he was a young animal with a tapered unbroken rattle. He eventually endured four annual surgeries to implant and replace transmitters, followed by a fifth surgery in 2013 to remove his last radio.

Here is a PowerPoint slide of Male 01
Here is a PowerPoint slide I use to illustrate how marking the rattles helps to judge growth and shedding frequency. The photos are of my Male #1. It also demonstrates how the rattle breaks over time. According to my friend, the 2011 paint is now just two segments from being lost but the snake is big,  healthy, and thriving. You can see that, once the early tapered segments are gone, the rattle offers little insight into the age of the snake.

Male 01 being sighted alive and healthy is just more evidence that the surgical protocol and other study methods used by me and many of my rattlesnake-researcher colleagues is well tolerated by the animals we seek to learn more about.

Rattlesnake intelligence?

Despite my frequent admonition that we often tend to give rattlesnakes and similar animals too much credit for cognitive thought, friends at San Diego State University recently published some compelling evidence that rattlesnakes may learn from experience and apply those lessons to anticipate and mitigate problems during future similar circumstances. Bree Putman and Rulon Clark have spent years studying rattlesnake predation tactics by setting up video cameras on hunting rattlesnakes and recording their predatory encounters with small mammals. (This works because rattlesnakes are ambush hunters that sit still for long periods of time, waiting for prey to wander by.)

While reviewing 2000 hours of video, Bree and Rulon discovered two examples of rattlesnakes using their heads and necks to move foliage out of the way that might otherwise interfere with a strike when prey wanders close (click here for video). The animals involved were Northern Pacific Rattlesnakes – the same species as we have in the Sacramento area. Similar behavior has been reported a couple of times in the past, once involving a Prairie Rattlesnake (Crotalus viridis) and once involving an Arizona Blacktail Rattlesnake (Crotalus molossus); both these incidents were witnessed by observers but not recorded.

Thus, evidence continues to accumulate that rattlesnakes are likely more social and maybe more intelligent than previously thought – although many habits are undoubtedly genetically programmed by natural selection. The new report by Putman and Clark is contained in the current issue of The Southwestern Naturalist (volume 60, number 4; December 2015).

For more interesting videos of natural predatory behavior by rattlesnakes, go to Rulon’s YouTube page.